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A recent free-energy model for charged-Yukawa mixtures, based on an extension of the Coulomb ‘‘linear-
mixing rule’’ to Yukawa charges, enables us to obtain a very accurate equation of state of bulk dense-plasma
mixtures. A self-consistent density functional theory for pair correlations predicts the energy to better than a
few parts in 104 when compared with the best available simulations for both Yukawa and Coulomb plasmas.
The simulations results for the tiny deviations from ‘‘linear mixing’’ are accurately represented by the
hypernetted-chain approximation, as well as by an analytic variational hard-sphere model~which, ironically,
both provide only two figures of accuracy for the potential energy!. The self-consistent density functional
theory provides the most accurate presently available ‘‘first principles’’ description for the structure and
equation of state of the bulk Coulomb and Yukawa mixtures, and can be applied also to inhomogeneous
plasmas.@S1063-651X~96!00708-8#

PACS number~s!: 52.25.Fi, 05.20.2y, 61.20.Ja

I. INTRODUCTION

Many quite disparate systems with screened Coulomb in-
teractions, of importance in condensed matter physics, can
be described with the Yukawa interparticle potentialse2ar /r
as a reference point@1#. Systems with repulsive Yukawa po-
tentials@2–4# provide models for, e.g., dense stellar materi-
als @5–6#, inertially confined plasmas@5–6#, and ‘‘meso-
scopic plasmas’’ of charge stabilized colloidal suspensions
such as latex spheres in water@7–12#. Because the shape of
the potential varies continuously with the screening length,
the Yukawa form for the interaction is useful for testing gen-
eral ideas about phase transitions@10#. Screened binary ionic
mixtures@2–5# are applicable to astrophysical problems in-
volving phase separation of elements~e.g., in white dwarf
star interiors! @13,14# and to inertial-confinement experi-
ments in plasma physics. These problems require@15–17#
very accurate equations of state for the mixture. Accurate
free energy of the mixture is also required, through the zero
separation theorem, for calculating enhancement factors for
nuclear reaction rates in very dense stellar interiors@18#, and
in relation to fundamental liquid state theory@19#. There is a
growing interest in this important reference system in con-
densed matter physics, and systems of particles interacting
through the repulsive Yukawa pair potential have been the
object of intensive investigations in recent years, using simu-
lations @9–12,20–22# and additional theoretical methods
@23–26#.

In simulations for weak screening, near the Coulomb
limit, it is important to use the ‘‘Ewald’’ potential@27–29#
which takes into account the contributions from outside the
simulation box. Indeed, the Ewald potential has already been
used in earlier works on the Yukawa@30# and other@31#
screened-Coulomb potentials. Earlier simulation studies of

the Yukawa system@9–12# employed the standard minimal-
image method with a cutoff radius for particle interactions,
which is justified for short range potentials resulting from
stronger screening. An additional treatment of the Ewald
method for simulating Yukawa systems was presented re-
cently @32# which highlights certain general properties of the
method, and enables instant adaptation of well documented
existing codes for Coulomb interactions.

A recent free-energy model for charged-Yukawa mixtures
@23# enables us to obtain, to very high accuracy, the equation
of state of bulk dense-plasma mixtures. The excess free en-
ergy for the mixture is given by an average of those for two
appropriately chosen single component Yukawa systems, as
an extension of the Coulomb ‘‘linear mixing rule’’ to
Yukawa charges. In view of the high accuracy of this ap-
proximation, deviations from the Coulomb or Yukawa
‘‘mixing rules’’ can be meaningfully determined only by
simulations which are accurate to roughly one part in 105

~i.e., provideabout five significant figures for the potential
energy!. An additional self-consistent density functional
theory for the structure provides between three to five figures
of accuracy for the energy when compared with the recent
ultrahigh accuracy simulations@33,34# for both the one-
component and binary Coulomb plasma mixtures. The simu-
lations results for the tiny deviations from ‘‘linear mixing’’
are accurately represented@35# by the hypernetted-chain ap-
proximation, and by an analytic variational hard-sphere
model, which, ironically, provide only two figures of accu-
racy for the potential energy. In turn, the density functional
theory, with all its exceptional high accuracy, cannot provide
correctly the deviations from the ‘‘mixing rules’’, and the
reason for this will be discussed. However, by combining the
results of the density functional theory with those of the
analytic variational model or the hypernetted-chain equation
for the deviations from the ‘‘mixing rules,’’ the most accu-
rate simulation results for the structure and equation of state
of the Coulomb and Yukawa systems can be reproduced with
unprecedented high accuracy. Preliminary accounts of parts
of the present work were given before@35,36#.
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II. COULOMB AND YUKAWA ‘‘MIXING RULES’’

We consider classical binary mixtures~i51,2! consisting
of Ni positively charged,Zie.0, Z2>Z1 , point particles
interacting through the Yukawa pair potentials

ui j ~r !

kBT
5ZiZjG

e2ar

r
. ~1!

Measuring distances in units of the total Wigner-Seitz radius
a5(3/4pn)1/3, where n5N/V[(N11N2)/V is the total
number density, defineG5e2/akBT as the conventional
plasma coupling parameter, whereT is the temperature. The
inverse screening lengtha can be density and temperature
dependent. For a one-component Yukawa system, with
Zi51, the potential energy, in units ofNkBT, is a function
of two variables: u[U/NkBT5u(G,a). For the mix-
ture it depends also on the charges and on the relative
concentrations x[x25N2/N512x1 , Umix/NkBT
5umix(x,Z1 ,Z2 ,G,a).
An accurate scaling law, which relates the configurational

free energy of the mixture to that of the one-component sys-
tem, is important because of its physics content and because
it facilitates the representation of a large body of data for
mixtures of, e.g., different charges and compositions, in a
concise form. A widely used approximation for unscreened
plasma mixtures is the empirical ‘‘linear mixing rule’’
@15,16#. It states that~e.g.! the energy of the plasma mixture
at constant temperatureT and charge densityr8 can be ex-
pressed, to a high degree of accuracy, as a linear interpola-
tion between the energies of the respective pure phases. The
linear rule for unscreened@17# and moderately screened@2#
binary ionic mixtures, is based on the ‘‘ion-sphere’’ model,
which provides an Onsager type@37# exact lower bound for
the potential energy of the mixture, as first proven by Lieb
and Narnhofer@38#. The linear-mixing rule was first verified
by extensive hypernetted-chain calculations, which provide a
very useful tool for developing such theories@5,15,16#, and it
was only later validated by the heavy simulations@5# which
were required.

A nontrivial generalization of the linear-mixing rule to
Yukawa interactions was achieved recently. For the case of
binary Yukawa mixtures the approximate scaling law has the
form @23#

umix~x,Z1 ,Z2 ,G,a!5~12x!u~G1 ,a1!1xu~G2 ,a2!,
~2!

where~i51,2!

G i5~Zi
2/l i !G, a i5al i ~3!

and where theli are obtained from the solution of the fol-
lowing set ofnonlinearcoupled algebraic equations

l i
35

ZiQ~al i !

~12x!Z1Q~al1!1xZ2Q~al2!
, i51,2. ~4!

The plasma is weakly, moderately, or strongly coupled ac-
cording to whetherGeff5x1G11x2G2!1, ;1, or @1, re-
spectively. The function

Q~ t !5
2t3

3@et~ t21!1e2t~ t11!#
<1

has the following physical meaning: The Yukawa intermo-
lecular potential has the special property@23# that the poten-
tial outside a spherically symmetric uniform distribution of
chargeZi inside a sphere of radiusli , retains the Yukawa
form, but the charge is renormalized by the factor 1/G(al i),
i.e.,F(r>l i)5Zi /Q(al i)e

2ar /r . The Gauss-Newton theo-
rem for the Coulomb potential~a50! is manifestly satisfied
by Q~0!51, l i5(Zi /^Z&)1/3, and in this Coulomb limit the
Yukawa mixing rule corresponds to the ‘‘linear-mixing
rule’’ @15# approximation for unscreened plasmas

umix~x,Z1 ,Z2 ,G,a50!5~12x!u~G1 ,a50!

1xu~G2 ,a50!, ~5!

where~i51,2!

G i5Zi
5/3^Z&1/3G. ~6!

The Yukawa mixing rule has a simple physical meaning in
the context of the Thomas-Fermi model for the equation of
state of mixtures of elements, as discussed in@23#.

This Yukawa mixing rule~sometimes referred to as the
‘‘nonlinear’’-mixing rule, due to the nonlinearity of the
equations for determining theli! should be verified eventu-
ally by simulations but, similarly to the past experience with
the Coulomb linear rule, it is expected that a good indication
for its general validity can be obtained within the
hypernetted-chain approximation. From such extensive cal-
culations @23# for binary mixtures it was found that the
Yukawa mixing rule holds to an accuracy of about 0.1% for
a wide range of values for the physically relevant parameters,
namely, values ofa<3, charge ratiosZ1/Z2<30, and effec-
tive couplingsGeff5(S ixiG i)e

2a<200. This high accuracy
increases with increasingGeff , and is expected to hold for
even more extreme values of the charge ratioZ1/Z2 and
screening parametera. The linear-mixing rule can be applied
also for Yukawa mixtures, i.e., usingRi

35Zi /^Z&, but it is
overall much less accurate than the full solution of the non-
linear equations~4!. From the physics point of view, the
Yukawa mixing rule for screened plasmas is a significant
improvement over the linear rule, and its improvement over
the linear-mixing rule becomes more significant asa or G
increase.

III. DEVIATIONS FROM THE ‘‘MIXING RULES’’

With the increasing possible accuracy attainable by the
simulations it became possible to consider the relatively very
small deviations from the linear-mixing approximation
which, however, turn out to have very important conse-
quences for the predicted phase diagrams@39,40#. Due to the
extremely long runs required, there are relatively few results
of that high accuracy@33,34#, and limited to only Coulomb
mixtures. Thus, even though the theory is general and applies
to both Coulomb and Yukawa charges, the numerical com-
parisons with simulations for mixtures in this paper concen-
trate on unscreened plasmas. For unscreened plasmas, the
linear-mixing ~LM ! ‘‘rule’’ takes the form,
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uLM~j,x,G1!5~12x!uOCP~G1!1xuOCP~G25G1j
5/3!,

~7!

where j5Z2/Z1>1 is the charge ratio, and
uOCP~G!5u~a50,G! represents the internal energy for the
unscreened one-component plasma~OCP!. SinceuLM is al-
ready a good approximation for the potential energy of the
binary ionic mixture~BIM ! uBIM the analysis ofuBIM cus-
tomarily proceeds by considering the ‘‘deviations from linear
mixing’’

DuBIM5uBIM2uLM . ~8!

In view of the fact thatDuBIM is relatively very small,
very highly accurate equations of state forboth the one-
component plasma~OCP! and the binary ionic mixtures
~BIM ! are required for its accurate determination. Accurate
simulation data for the BIM were provided by Ogata and
co-workers@40#, and by DeWitt and Slattery@41#. Very re-
cently, ultrahigh accuracy results were presented@33,34# by
DeWitt, Slattery, and Chabrier for both the BIM and the
corresponding OCP energies, so thatDuBIM could be accu-
rately determined using Eqs.~7!, ~8!. All these simulations
agree very well with an analytic model, which thus provides
a convenient representation for the equation of state of the
mixture, and is expected to be more reliable than a plain fit
for purposes of interpolations and extrapolations of the data.

The model is based on the idea to consider the well
known variational hard-sphere model@42,43# separately for
the mixture and for the one-component systems withG1, and
G2, and to calculate thedeviationfrom linear-mixing entirely
within the model. The expectation is that inaccuracies of the
model will cancel out between the results for the mixture and
for linear mixing, to yield accurate values forDuBIM.

The model excess free energy~in NkBT units! for the
Coulomb plasma is written in the form~see Appendix A!

f ex~h,q,Ge ,Z1 ,Z2 ,x!5 f ex
PYV~h,q,x!

1uPY~h,q,Ge ,Z1 ,Z2 ,x!, ~9!

where f ex
PYV is the excess free energy for the hard-sphere

binary mixture as obtained from the Percus-Yevick ‘‘virial’’
~PYV! equation of state@45#, anduPY is the excess~poten-
tial! energy obtained by the standard energy integral but us-
ing the Percus-Yevick~PY! radial distribution functions
@45#, and can be expressed analytically. The variational pa-
rameters are the total hard-sphere packing fractionh and the
ratio between the two hard-sphere diametersq. The optimal
values of the parametersh0, q0 are obtained by minimizing
f ex. The reason for choosing the PY-virial entropy is that for
the OCP it provides the paradigm@43# for the functional
form used to fit the Monte Carlo data. It yields@43# the
following asymptotic largeG expansion:

uPY„h0~G!,l,G,Z151,Z2 ,x50…520.9G10.971G0.2520.5

1•••, ~10!

featuring the form

uOCP~G!5aG1bGs1c, ~11!

which can be conveniently used to fit both the simulations
and hypernetted-chain~HNC! results forG>1. It was proven
@44# that within the HNC approximation, which neglects the
bridge functions,a520.9 ands50.5. The very recent high
accuracy Monte Carlo results have been fitted, forG>1, by
DeWitt, Slattery, and Chabrier@33#

a520.899 126, b50.607 12,

c520.279 98, s50.321 308

with a standard deviation ofs560.0045, which is@33# ‘‘the
most accurate fitting function for the OCP energy at the
present time.’’ It is known@24# that the leading asymptotic
largeG term of the above hard-sphere~Percus-Yevick! varia-
tional model for plasma mixtures obeys the linear-mixing
rule, and in view of the nature of the asymptotic expansion,
the deviations from linear mixing are expected to be rela-
tively small. It was already found@35# that the results of this
analytic model forDuBIM are very similar to those obtained
within the hypernetted-chain~HNC! approximation, featur-
ing always positive deviations from linear mixing.

TheDuBIM results from the analytic variational model and
from the hypernetted-chain approximation are compared
with the simulations in Table I, and in Figs. 1–4. The overall
agreement between the theories and the simulations is very
good, yet theG1 dependence of the simulations results is
larger than predicted by the theoretical models. The models
predict that the deviations from linear mixing are always
positive, in agreement with the simulations. The models pre-

TABLE I. Deviations from ‘‘linear mixing’’ for binary ionic
mixtures ~BIM !, as calculated by Monte Carlo~MC! simulations
@33#, @34#, by the variational model~VAR!, and by the hypernetted-
chain approximation~HNC!. The entries marked by a star employ
the BIM simulations of Ogata and co-workers@40#.

Z2 G1 x2 DuBIM,MC DuBIM,VAR DuBIM,HNC

3 10 0.01 0.000 6060.000 18 0.000 75 0.000 74
3 10 0.02 0.001 0460.000 18 0.001 49 0.001 04
3 10 0.05 0.002 0660.000 21 0.003 54 0.003 20
3 10 0.10 *0.00660.001 0.006 21 0.005 83
3 10 0.20 *0.01060.0011 0.0108 0.0094
3 10 0.50 *0.01260.0021 0.0139 0.0107
3 15 0.01 0.000 3860.000 22 0.000 74 0.000 78
3 15 0.05 0.002 2560.000 25 0.003 49 0.003 40
3 15 0.10 *0.003 5160.001 0.006 38 0.005 91
3 15 0.20 *0.00860.0111 0.0106 0.009 12
3 15 0.50 *0.00860.0021 0.0135 0.0099
3 20 0.01 0.000 9760.000 31 0.000 71 0.000 71
3 20 0.05 0.002 8160.000 26 0.003 40 0.003 36
3 20 0.10 *0.00660.001 0.006 21 0.005 83
3 20 0.20 *0.00560.002 0.0103 0.008 96
3 20 0.50 *0.00760.002 0.0132 0.0094
5 10 0.01 0.001 4460.000 21 0.001 83 0.002 01
5 10 0.05 0.006 8860.000 22 0.008 60 0.008 82
5 10 0.10 0.012 6660.000 28 0.015 37 0.0149
5 10 0.20 0.018 5560.000 40 0.02439 0.021 49
5 10 0.50 0.019 6760.000 84 0.02852 0.0209
8 10 0.01 0.002 6660.000 19
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dict ~Fig. 4! linear dependence ofDuBIM on x2 for small
relative concentrations of the larger charge~see also Ref.
@16#!.

Extensive simulation data for Yukawa mixtures is not yet
available, but our calculations predict that the deviations
from the Yukawa linear mixing are alwayspositive, and
change very slowly witha. It is also interesting to note here
that ~like for the Coulomb plasma! the deviations from the
Yukawa linear mixing within the hypernetted-chain~HNC!
approximation@23# are similar in magnitude to those ob-
tained by the variational model, and are also alwayspositive.
As discussed in detail in@35,46,47#, and in @18,33,34#, our
results contradict those of Ogata and co-workers, who found
@40# negative deviations from linear mixing in the limit of
small concentrations of the larger charge~x2,;0.1!. The
claimed consequences for the enhancement factors and for
the phase diagrams@40,48# appear to be irrelevant.

IV. SELF-CONSISTENT DENSITY FUNCTIONAL THEORY

Density functional methods played a key role in providing
the now emerging comprehensive picture of the complex
thermodynamic behavior of fluids in confined geometries. As

a quite general approach to the equilibrium properties of
nonuniform fluids, the density functional method has proven
to be one of the more successful and widely applicable ap-
proaches to a variety of interfacial phenomena like adsorp-
tion, wetting, and freezing@49#.

The density profiles$rm(rW)% for the fluid subject to exter-
nal potentials$um(rW)% which couple to the particles of type
$m; m51,2,...,M % are obtained by solving the Euler-
Lagrange equations

dV@$rm~rW !%#/dr i~rW !50, i51,2,...,M , ~12!

which correspond to the minimization of the grand potential
V[ $rm(rW)%],

V@$rm~rW !%#5F id@$rm~rW !%#1Fex@$rm~rW !%#

1(
i
E drW r i~rW !@ui~rW !2m i #, ~13!

wheremi are the chemical potentials. The ideal-gas free en-
ergy is given by the exact relation

FIG. 2. Deviations from ‘‘linear mixing’’ for binary ionic mix-
turesDuBIM for different charge ratiosZ2 ~Z151!, as a function of
the concentrationsx2 of the larger chargeZ2.Z151, for G1510.
The symbols represent the simulation results, and the lines are the
results of the variational model~see the text and Table I!.

FIG. 3. Deviations from ‘‘linear mixing’’ for binary ionic mix-
turesDuBIM for Z253 andZ151, as a function of the concentra-
tions x2 of the larger chargeZ2.Z151, for different values ofG1.
The full symbols represent the simulation results. The open dia-
monds represent the HNC results forG1510, and the lines are the
results of the variational model forG1510. The theoretical results
do not vary appreciably withG1 ~see the text and Table I!.

FIG. 4. Same as Fig. 3, but forZ255 andZ151.

FIG. 1. Deviations from ‘‘linear mixing’’ for binary ionic mix-
turesduBIM for different charge ratiosZ2~Z151!, for small concen-
trationsx2 of the larger chargeZ2.Z151, for G1510. The symbols
represent the simulation results, and the lines are the results of the
variational model~see the text and Table I!.
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F id@$rm~rW !%#5kBT(
i
E drW r i~rW !$ ln@r i~rW !l i

3#21%,

~14!

wherel i5(h2/2pmikBT)
1/2 are the de Broglie wavelengths.

The central quantity in the density functional theory for non-
uniform fluids is the excess~over ‘‘ideal-gas’’ contributions!
free-energyFex[ $rm(rW)%] which originates in interparticle
interactions. It is a unique functional of the spatially varying
one particle densities,$rm(rW)%, which is in general unknown.

A hierarchy of direct correlation functionsc(n,FD) is given
by functional derivatives~FD! of the excess free-energy
functional. In particular, the one particle~n51, the excess
chemical potential! and pair~n52! direct correlation func-
tions are

kBTci
~1,FD!~rW1!52

dFex@$rm~rW !%#

dr i~rW1!
52m i ,ex@$rm~rW !%;rW1#,

~15!

kBTci j
~2,FD!~rW1 ,rW2!52

dFex@$rm~rW !%#

dr i~rW1!dr j~rW2!
. ~16!

In the language of density functional theory, when given the
excess free-energy functionalFex, the exact equations for the
pair correlation functions of the bulk fluid can be written in
the modified hypernetted-chain form, with the bridge func-
tion given through the bridge functional which is related to
the free-energy functional@24#. A key role is played by the
fundamental-measure excess free-energy functional for hard
spheres@50–53# from which the ‘‘universal’’ bridge func-
tional ~see below! is derived in explicit form.

When the external potential is obtained by fixing atest
particle of type t at the originui(rW)5f t i(r ) wheref t i(r ) is
the corresponding pair potential between particles of typest
and i in the fluid, then the density profilesr i(r ) normalized
to unity at largerr , correspond to the pair distribution func-
tions in the bulk uniform fluidgti(r )5r i(r )/r i ,0, where
$rm,0% are the average densities of the bulk fluid. The test
particle limit of the exact density profile equations takes the
form @24,36,52#

gti~r !5expS 2
f t i~r !

kBT
2b̄ti~r !

1(
j

r j ,0E dr8W cji ~ urW2r 8W u!ht j~r 8! D , ~17!

whereht j (r )5gt j (r )21, andci j (r ) are the uniform fluid,
bulk limit of the direct correlation functions as obtained from
the second functional derivative~FD! of the excess free-
energy functional. Thesymmetrizedbridge function.

b̄ti~r !5
xibti~r !1xtbit~r !

xt1xi
~18!

is obtained as the appropriate weighted bulk average of the
bridge functionsbi j (r ) , which are derived from thebridge
functional Bi [ $rm,0%;$rm(rW)%;rW] by usingr i(rW)5r i ,0gti(r )

bti~r !5Bi@$rm,0%;$rm,0gtm~r !%;r #. ~19!

Theexactfree-energy functional must obey the ‘‘test par-
ticle self-consistency’’: the exactgi j (r )’s as obtained from
the solution of the coupled density profile equations~17! and
~18! are identical to those obtained from the Ornstein-
Zernike relations

hti~r !5cti~r !1(
j

r j ,0E dr8W cji ~ urW2r 8W u!ht j~r 8!. ~20!

The bridge functional is defined as follows@24#: Separate the
free energy into a ‘‘second order’’ part and a ‘‘bridge’’ part,

Fex@$rm,0%;$rm~rW !%#5Fex
~2!@$rm,0%;$rm~rW !%#1Fex

~B,ref!

3@$rm,0%;$rm~rW !%#, ~21!

whereF ex
~2![ $rm,0%;$rm(rW)%] is the second order functional of

the system andFex
(B,ref)@$rm,0%;$rm(rW)%# generates the bridge

functional of thereferencesystem~which can also be the
original system at hand!

Bi
ref@$rm,0%;$rm,0gtm~r !%;rW#

5
m i ,ex
ref @$rm~r !%;r #

kBT
2

m i ,ex
ref @$rm,0%#

kBT

1S jr j ,0E dr8W ci j
~2,FD!,ref@$rm,0%;~ urW2r 8W u!#

3~gt j~r 8!21!%. ~22!

The resulting coupled equations~17!–~20!, for both$gi j (r )%
and$ci j (r )%, in which the bridge functions are obtained from
the exact bridge functionals Eq.~22! should provide the ex-
act pair correlations. Given approximate~‘‘reference’’!
bridge functionals, the same set of equations defines the ref-
erence bridge functional approximation, which also opti-
mizes the second order free-energy functional when starting
from the corresponding approximate~‘‘reference’’! free-
energy functional. Given explicit ‘‘reference’’ bridge func-
tionals, the coupled equations~17!–~20! represent a well de-
fined approximation for the pair correlation functions. It is
possible tooptimize the reference-system parameters, by us-
ing the following equations~see Appendix B!, which are the
same as derived by Lado@60# in the context of the modified
hypernetted-chain theory@19#:

(
i j

r i ,0r j ,0E drW@gi j ~rW !2gi j
ref~rW !#db̄i j

ref~$glm%;rW !50.

~23!

For simple fluids, interacting via Lennard-Jones~LJ! type
potentials, or plasmas of point charges interacting through
the Coulomb or Yukawa potentials similar results are ob-
tained by the simplified form@24#

(
i j

r i ,0r j ,0E drW@gi j ~rW !2gi j
ref~rW !#b̄i j

ref~$glm%;rW !50.

~24!
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For a correct description of phase boundaries it is best to
optimize the reference potential parameters by imposing
thermodynamic consistency~e.g., ‘‘energy-compressibility’’
consistency, and see below!.

In practice, the reference bridge functional calculations all
start from the same model free energy for the hard-body
fluids, and thus from the same reference bridge functionals.
The self-consistent method is thus operationally equivalent
to the approximation that the bridge functional isuniversal,
and is given~e.g.! by that derived from the fundamental-
measure free-energy functional for the hard-sphere fluid
@50–53#. Thus we replace thegi j

ref(r ) in the Lado equations
by the results obtained by the Ornstein-Zernike equation us-
ing ci j

(2,FD),ref, namely,gi j
(OZ,FD),ref, which, in the case of the

fundamental-measure functional for hard-spheres, turn out to
be just the well known Percus-Yevick hard-sphere correla-
tion functions.

The hard-sphere ‘‘universal’’ bridge functional, and the
corresponding optimized free-energy functional have been
tested~directly and also implicitly! very successfully, for a
variety of hard and soft pair interactions and external poten-
tials, by comparison with computer simulations of density
profiles for a large variety of situations where size or packing
effects play an important role and by comparison with ex-
periments on colloids and emulsions which address the chal-
lenging question of phase separation in asymmetric binary
hard-sphere mixtures@50–59,24#. As special cases for the
general method, accurate results@58# were obtained also for
the bulk pair correlation functions for a variety of potentials,
for both one-component systems and mixtures. ‘‘Universal-
ity of the bridge functional’’ @24# for general nonuniform
fluids generalizes ‘‘universality of the bridge functions’’
@19#. The application of this general method to the special
cases of charged particles and to plasmas is in accord with
the asymptotic strong coupling limit of integral equation
theories for the pair structure~‘‘Onsager limit’’! @47,61#. The
fundamental-measure excess free-energy functional extends
the scaled particle@62# and scaled field-particle@63# theories
to inhomogeneous hard particle mixtures. By capturing the
correct geometric features it provides an accurate universal
bridge functional for bulk simple fluid mixtures, and may
well do the same@53# for nonspherical molecular fluids.

Perhaps the most striking tests for repulsive soft potentials
is provided by the plasmas@24# ~point charges!!. When the
recent extra-long simulations results for binary ionic mix-
tures @33,34# became available, the self-consistent density
functional method has been applied to these important sys-
tems, to find excellent agreement with the simulations. The
results for the potential energy are compared with the simu-
lations, and with the hypernetted-chain theory, in Tables II
and III. Between three to five figures of accuracy for the bulk
potential energy are achieved by the density functional
theory, without any adjustable parameters. A typical example
of the high accuracy for the pair correlation functions is
given in Fig. 5. Similar accuracy for the energy and pair
correlation function is achieved for the one-component
plasma~OCP!. Accurate results for the energy of the one-
component Yukawa system were recently tabulated@20#.
The self-consistent density functional theory results agree to
better than a few parts in 104 with all these simulations re-
sults for the energy of the Yukawa system in the fluid state.

Like in the modified HNC calculations using a universal
bridge function@19#, the density functional theory results for
the compressibility equation of state are much more sensitive
to the reference-system parameters~e.g., the ‘‘bridge’’ effec-
tive packing fraction! than the corresponding results for the
energy. Thus, if thermodynamic consistency is desired, it can
be imposed~instead of the Lado criterion! in order to deter-
mine the ‘‘bridge’’ effective packing. This procedure will
yield almost identical results for the energy as obtained from
the Lado equations, but will also provide much more accu-
rate results for the compressibility.

Using the density functional theory I also reconfirmed
~see Table IV! the Hansen-Verlet rule@64# about the value of
the maximum value of the structure factor at freezing,

TABLE II. Potential energies for the one component plasma
~OCP! as calculated by Monte Carlo~MC! simulations@33#, @34#,
by the density functional theory~DFT!, and by the hypernetted-
chain approximation~HNC!.

G uOCP,MC uOCP,DFT uOCP,HNC

1 20.572 0560.000 05 20.571 81 20.570 45
5 23.756 9660.000 10 23.764 62 23.732 07
10 27.998 3760.000 14 28.004 97 27.935 44
20 216.673 2760.000 16 216.6986 216.5377
40 234.259 4060.000 26 234.2932 233.9992
80 269.727 4260.000 41 269.7612 269.2636
160 2141.039 6360.000 69 2141.023 2140.257

TABLE III. Potential energies for the binary ionic mixtures
~BIM ! as calculated by Monte Carlo~MC! simulations@33#, @34#,
by the density functional theory~DFT!, and by the hypernetted-
chain approximation~HNC!. The entries marked by a star denote
the BIM simulations of Ogata and co-workers@40#.

Z2 G1 x2 uBIM,MC uBIM,DFT uBIM,HNC

3 10 0.01 28.458 7460.000 11 28.4628 28.393
3 10 0.02 28.919 2760.000 11 28.934 28.850
3 10 0.05 210.300 5360.000 14 210.297 210.221
3 10 0.10 212.60260.001* 212.592 212.508
3 10 0.20 217.20860.001* 217.201 217.082
3 10 0.50 231.03560.002* 231.032 230.815
3 15 0.01 213.012 0460.000 18 213.0166 212.907
3 15 0.05 215.790 6860.000 26 215.7850 215.668
3 15 0.10 219.26560.001* 219.252 219.120
3 15 0.20 226.21260.001* 226.199 226.026
3 15 0.50 247.06660.002* 247.057 246.752
3 20 0.01 217.601 8860.000 26 217.6033 217.461
3 20 0.05 221.318 3460.000 19 221.3100 221.156
3 20 0.10 225.96360.001* 225.948 225.776
3 20 0.20 235.26060.002* 235.237 235.017
3 20 0.50 263.14560.002* 263.126 262.749
5 10 0.01 29.204 1460.000 15 29.203 26 29.134
5 10 0.05 214.027 5360.000 15 214.0081 213.929
5 10 0.10 220.058 4060.000 17 220.0301 219.926
5 10 0.20 232.123 9960.000 23 232.0974 231.924
5 10 0.50 268.339 1360.000 32 268.3609 267.940
8 10 0.01 210.756 9860.000 18 210.7466 210.680
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S(k)MAX;3 at freezing. Since the density functional theory
employs a universal bridge functional, which was derived for
hard spheres, I also obtain at each case the value of an ef-
fective hard-sphere packing fractionh associated with the
optimal ~self-consistent! bridge function~see Table III!. For
all the freezing points in the literature for all potentials, the
value of the bridge parameter~i.e., the reference-system ef-
fective packing! h is very close to its hard-sphere value of
h50.5. This is a nice confirmation of the ‘‘bridge freezing
rule’’ @65#: b(r50)'50 at freezing. It will be interesting
to check this rule for two dimensional systems, for which the
‘‘bridge freezing rule’’ is expected@65# to hold as well.

It is also interesting to observe that the self-consistent
bridge functions have the property that their asymptotic large
distance form also provides an excellent description of the

functions at intermediate distances~Fig. 6!. This property
was observed@66# for the pair correlation functionsh(r ) of
various model simple fluids. A long standing question con-
cerns the sign of the bridge functions. The bridge functions
that are obtained for the hard spheres by regarding the
Percus-Yevick analytic results as a solution to the modified
hypernetted-chain equation@19# are positive definite. The
bridge functions that are obtained from the self-consistent
density functional theory results and the ‘‘universal’’ bridge
functional were up to now found to be positive in all our
numerical calculations for simple fluids and plasmas. More-
over, a systematic search of the output of the bridge func-
tional for input pair correlation functions from the Percus-
Yevick result for hard spheres, has shown~Fig. 7! that the
resulting bridge functions are positive for all input functions
corresponding to the hard-sphere fluid. Although indicative,
these results still leave open the general question regarding
the sign of the bridge functions.

V. CONCLUSION

The self-consistent density functional theory presented
above, as based on the fundamental-measure hard-sphere
bridge functional, is the most accurate available ‘‘first prin-
ciples’’ theory for the structure and the equation of state of
classical plasmas. An additional major advantage of this
theory is that its application to the bulk plasma represents

FIG. 5. Pair correlation functionsgi j (r ) for the equimolar
~x15x250.5! binary ionic mixture ofZ255 andZ151, atG1510.
The symbols represent the Monte Carlo data of DeWitt, Slattery,
and Chabrier@33#, @34# and the lines are the results of the self-
consistent density functional theory~see the text!.

TABLE IV. Self-consistent density functional theory: maximum
of the structure factorSmax(k) and the ‘‘bridge’’ effective packing
fraction at freezing,~hB!freezing, for different interaction potentials.

Inverse-power potentials,
f~r !

kBT
5

e

kBT
S s

r D
n

,
e

kBT
51

n rs3 ~hB!freezing Smax(k)

1 ~G5171! 0.5011 3.00
4 4.94 0.4767 2.69
6 2.292 0.4918 2.97
12 1.151 0.4825 2.86
` 0.943 0.5042 3.25

Yukawa potential
a G ~hB!freezing Smax(k)

0 171 0.5011 3.00
1 220 0.4992 3.00
1.83 400 0.5001 3.07
3.34 1800 0.4938 3.02

Lennard-Jones~12-6! potential:
f~r !

kBT
5

4e

kBT
F S s

r D
12

2S s

r D
6G

kBT/e rs3 ~hB!freezing Smax(k)

100 2.601 0.4812 2.85
2.74 1.113 0.4719 2.78

FIG. 6. Bridge functionsb(r ) on logarithmic scale, for different
one component systems, as obtained from the self-consistent den-
sity functional theory. The reference bridge parameter~the radius,
R, or the corresponding effective packing,hB54prR3/3, is deter-
mined by the Lado equations~see the text!. The different lines
correspond to~from top to bottom!:

Potential Density-temperature

Bridge effective

packing,

hB54prR3/3

Yukawa G5350,a51.8 0.4933

Coulomb G5100 0.4374

Yukawa G5350,a52.4 0.4437

hard-sphere r*5rs350.8

~i.e., h50.4189!

0.4310

Lennard-Jones r*5rs50.8,

T*5kBT/«52

0.3781
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just a special case of its applicability to general inhomoge-
neous fluids and plasmas. In particular, it was already found
successful@24# in reproducing simulation results for a OCP
against a hard wall~essentially the same as for the OCP with
a jump discontinuity of the compensating background charge
density!.

Despite its high accuracy~better than a few parts in 104!
for the energy, the above density functional theory is not
capable of providing accurate results for the tiny deviations
from the ‘‘mixing rules’’ ~representing a few parts in 105 of
the energy!, while much less accurate theories like the varia-
tional model and the hypernetted-chain approximation, can
describe correctly these deviations. The reason for this is
apparently the internal ‘‘coherence’’ within these models, by
which the relatively large errors for the one component sys-
tem and for the mixtures~larger than a few parts in 103!
cancel out when applied for calculating the deviations from
the ‘‘mixing rule.’’ This ‘‘coherence’’ is apparently lost by
the more sophisticated and more accurate density functional
theory.

The following semiempirical model for the equation of
state for fluid multicomponent plasmas, with or without
Yukawa screening, is thus proposed: Combine~i! the
‘‘mixing rule’’ approximation calculated with an accurate
equation of state for the one-component system as obtained
from simulations, together with~ii ! the deviations from the
‘‘mixing rule’’ calculated from the variational hard-sphere
model ~with the Percus-Yevick pair correlation functions,
and the Percus-Yevick ‘‘virial’’ entropy!:

f ex
~mix!5~ fmixing rule! from fit for one-component system

1~D f ex
~mix!! from variational Hard-sphere-model. ~25!

In particular, for the unscreened OCP we can use the
DeWitt-Slattery-Chabrier fit@33,34#

fOCP~G!5aG1
1

s
bGs1c lnG1d ~26!

with the parameters quoted above. As we have seen above,
this model agrees well with the simulations data for the bi-
nary ionic mixture. Given a good representation for the po-
tential energy of the one-component Yukawa system the
model, in its general form@19#, is applicable to arbitrary
fluid multicomponent Yukawa mixtures, and supplements
the Yukawa ‘‘mixing rule’’ developed@23# on the basis of
the asymptotic strong coupling properties.
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APPENDIX A: VARIATIONAL HARD-SPHERE
MODEL FOR YUKAWA

AND COULOMB PLASMA MIXTURES

The interaction potential energy of the mixture~per par-
ticle, in temperature units!, is given in general by the stan-
dard energy integral involving the pair~radial! distribution
functionsgi j (r )

u5
U

NkBT
5
n

2 (
i , j

xixjE gi j ~r !
f i j ~r !

kBT
d3r , ~A1!

where xi5Ni /N are the number concentrations. For the
Yukawa potentialui j (r )/kBT5ZiZjGe

2ar /r this takes the
special form

u5
U

NkBT
5
3G

2 (
i , j

ZiZjxixj Ĝi j ~a!, ~A2!

where Ĝi j (a)5* 0
`rgi j (r )e

2ardr is the Laplace transform
of [ rgi j (r )]. In the Coulomb limit,a50 we have to subtract
the contribution of the uniform compensating background
charge density, and the potential energy is related to our
energy expressionu by using@gi j (r )21# instead ofgi j (r ) in
~A1! and ~A2!, i.e.,

u5 lim
a50

3G

2 (
i j

xixjZiZj S Ĝi j ~a!2
1

a2D . ~A3!

The variational excess free energy@42,43# ~in NkBT units! is
based on the Gibbs-Bogoliubov-Feynman inequality, and
takes the form

f ex~a,h,q,Ge ,Z1 ,Z2 ,x!5 f ex
HS~h,q,x!

1uHS~a,h,q,Ge ,Z1 ,Z2 ,x!,

~A4!

FIG. 7. Onset of negative values of the bridge function. The
bridge functionb(r /a,h,hB) was obtained from the bridge func-
tional with reference bridge parameter~the effective packing! hB

and Percus-Yevick pair correlation functions, for hard spheres at
packing fractionh, as input. The bridge function is positive for all
cases marked by empty circles, while for the cases marked by full
circles it begins to have negative values forr /a'2.
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where f ex
HS is the excess free energy for the hard-sphere bi-

nary mixture, anduHS is the excess~potential! energy ob-
tained by the standard expression but using the hard-sphere
radial distribution functions in the energy integral. The varia-
tional parameters are the total hard-sphere packing fractionh
and the ratio between the two hard-sphere diametersq. The
optimal values of the parametersh0,q0 are obtained by mini-
mizing f ex

] f ex~a,h,q,Ge ,Z1 ,Z2 ,x!

]h
50;

~A5!
] f ex~a,h,q,Ge ,Z1 ,Z2 ,x!

]q
50.

With the exact hard-sphere input this gives an exact upper
bound to the excess free energy. With approximate input,
e.g., the Percus-Yevick pair correlations, and the Percus-
Yevick virial excess free energy, this provides a model ap-
proximation for the excess free energy, which is convenient
to apply since the Laplace transforms of the hard-sphere pair
correlations in the Percus-Yevick approximation are given
analytically@45#. In view of a misprint in the paper by Leb-
owitz @45#, and in order to make the present paper self-
contained, we hereby give the complete set of relations
which yields the desired expression for the energy integral
using the Percus-Yevick pair correlations for spheres of total
packing fraction h, and size ratio q. Define x25x,
x1512x2 , and since we use the Wigner-Seitz radius as our
unit of length, the density isr53/4p. Define r15x1r,
r25x2r, h15pr1/6, h25pr2/6, then the hard-sphere radii are
given by,R25[h/(h1q

31h2)]
1/3, R15qR2 , and define also

R125(R11R2)/2. The input parameters are thus:
a,x,q,G,h,Z1 ,Z2 .

~a! Energy integral for Yukawa mixtures:
uPY(a,h,q,G,Z1 ,Z2 ,x)

h536h1h2~R22R1!~R22R1!,

L1512h2F S 11
1

2
h D1

3

2
h1R1R1~R22R1!GR2a

2

1@12h2~112h!2hR1#a1h,

L2512h1F S 11
1

2
h D1

3

2
h2R2R2~R12R2!GR1a

2

1@12h1~112h!2hR2#a1h,

S5h1@12~h11h2!~112h!2h~R11R2!#a218~h1R1
2

1h2R2
2!2a226~h1R1

21h2R2
2!~12h!a32~12h!2a4,

D5h2L1exp~aR1!2L2exp~aR2!1S exp@a~R11R2!#,

g115a@h2L2exp~aR2!#/D/12/h1 ,

g225a@h2L1exp~aR1!#/D/12/h2 ,

G5F34 ~h2R2
32h1R1

3!~R22R1!2R12S 11
1

2
h D Ga,

g125~h1h2!
1/2a2exp~aR12!@G2~112h!#/D/~h1h2!

1/2,

uPY~a,h,q,G,Z1 ,Z2 ,x!5
3

2
G~x1

2Z1
2g111x2

2Z2
2g22

12x1x2Z1Z2g12!.

~b! Percus-Yevick virial excess free-energy fPYV~h,q,x!

A35~x1R1
31x2R2

3!,

A25~x1R1
21x2R2

2!,

A53~x1R11x2R2!A2 /A3 ,

B5
3

2
A2
3/A3

2,

f PYV~h,q,x!5~2B21!ln~12h!1~2B1A!h/~12h!.

~c! Energy integral for the one-component Yukawa system

L512hF S 11
1

2
h D s1~112h!G ,

S5@~12h!2#s316h~12h!s2118h2s212h~112h!,

g~h,s!5@~Ls/~12h!#/@L1S exp~s!#,

s52h1/3,

u~h,G,Z,a!5
3

2
GZ2s2g~h,as!.

~d! Percus-Yevick virial excess free energy for the one-
component system

f PYV~h!52 ln~12h!16h/~12h!.

~e! Energy integral for the Coulomb plasma
In the Coulomb limit of the Yukawa energies we have to

cancel correctly divergent terms, and the energy is given
through the following expressions:

h536h1h2~R22R1!~R22R1!,

a15@12h2~112h!2hR1#,

b1512h2F S 11
1

2
h D1

3

2
h1R1R1~R22R1!GR2 ,

a25@12h1~112h!2hR2#,

b2512h1F S 11
1

2
h D1

3

2
h2R2R2~R12R2!GR1 ,

a352~112h!,

b35F34 ~h2R2
32h1R1

3!~R22R1!2R12S 11
1

2
h D G ,

c15@12~h11h2!~112h!2h~R11R2!#,
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c25218~h1R1
21h2R2

2!2,

c3526~h1R1
21h2R2

2!~12h!,

c452~12h!2,

s125R11R2 ,

w45c41c3s121c2s12
2 /21c1s12

3 /61hs12
4 /24,

w65~c4/21c3s12/61c2s12
2 /241c1s12

3 /1201hs12
4 /720!s12

2 ,

d45w42F12 b1R1
21a1R1

3/61hR1
4/24G

2F12 b2R2
21a2R2

3/61hR2
4/24G ,

d65w62@b1R1
4/241a1R1/241hR1/120#

2@b2R2
4/241a2R2/241hR2/120#,

t152Fb1R11
1

2
R1
2a11hR1

3/6GY12/h2 ,

t252Fb2R21
1

2
R2
2a21hR2

3/6GY12/h1 ,

t35Fb3R121
1

2
a3R12

2 G ,
g225~ t12d6!/d4 ,

g115~ t22d6!/d4 ,

g125~ t32d6!/d4 ,

uPY~a50,h,q,G,Z1 ,Z2 ,x!5uPY~h,q,G,Z1 ,Z2 ,x!

5
3

2
G~x1

2Z1
2g111x2

2Z2
2g2212x1x2Z1Z2g12!.

For the one-component plasma obtain

s52h1/3,

uPY~h,G,Z,a50!5uPY~h,G,Z!5
3

2
GZ2s2F2

1

2 S 12
1

5
h

1
1

10
h2)Y ~112h!].

APPENDIX B: OPTIMIZATION OF THE REFERENCE
BRIDGE FUNCTIONAL PARAMETERS

Rewrite Eq.~21! in the form

Fex@$rm,0%;$rm~rW !%#5Fex
~ref!@$rm~rW !%#

1@Fex
~2!@$rm,0%;$rm~rW !%#2Fex

~2,ref!

3@$rm,0%;$rm~rW !%##. ~B1!

In the test particle limit for the density profile equations, the
second order functional~i.e, without ‘‘bridge’’ contributions!
corresponds to the hypernetted-chain~HNC! approximation
@49#. Thus the approximation corresponds to the following
approximation in the bulk fluid:

f5 f ~ref!1 fHNC2 fHNC
~ref! , ~B2!

where f5Fex/kBT, and fHNC denotes the HNC approxima-
tion free-energy functional for the bulk fluid@67#

fHNC5F1
r

4 (
i j

xixjE hi j
2 ~rW !drW, ~B3!

wherer5( jr j ,0, is the total bulk density andxj5r j ,0/r are
the relative concentrations. The so called ‘‘random-phase ap-
proximation free energy functional’’ is given by

F52
r

2 (
i j

xixjE ci j ~rW !drW1
1

2
~2p!23(

i
xiE cii ~kW !dkW

1
1

2r
~2p!23E dkW ln det~1=2CI !, ~B4!

where 1= is the unit matrix, andCI is the matrix of direct
correlation functions (CI ) i j5(xixj )

1/2ci j (k
W ). For pair correla-

tion functions which obey the Ornstein-Zernike equations,
and the HNC closure

gi j ~rW !5expS 2
w i j ~rW !

kBT
1hi j ~rW !2ci j ~rW ! D ~B5!

for some potentialsw i j (rW), the HNC functional has the prop-
erty @67# that its variation with respect to variation of the
potentials obeys

d fHNC5
r

2kBT
(
i j

xixjE gi j ~rW !dw i j ~rW !drW, ~B6!

which is the same relation as holds for the variation of the
exact free energy with respect to variation in the potentials.
We now recall that the bulk limit for the optimized free
energy is the solution of the HNC equation with the refer-
ence bridge functional, i.e.,w i j

ref5f i j
ref1b̄i j

ref , for f HNC
~ref! in Eq.

~B2!, or w i j5f i j1b̄i j
ref for fHNC in Eq. ~B2!. Thus the varia-

tion of the approximate free energyf in Eq. ~B3! with re-
spect to variation in the reference potentials is

d f5
r

2kBT
(
i j

xixjE drW

3
„gi j

ref~rW !df i j
ref~rW !1gi j ~rW !db̄i j

ref~$glm%;rW !

2gi j
ref~rW !@df i j

ref~rW !1db̄i j
ref~$glm

ref%;rW !#…

5
r

2kBT
(
i j

xixjE drW@gi j ~rW !db̄i j
ref~$glm%;rW !

2gi j
ref~rW !db̄i j

ref~$glm
ref%;rW !#. ~B7!

The relative insensitivity of the bridge functional to differ-
ences in the shapes of the input pair correlation functions
~which is the preassumption of the present method! implies
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that the difference@db̄i j
ref($glm%;rW)2db̄i j

ref($glm
ref%;rW)# is rela-

tively small, and to leading order in the variations we thus
have

d f5
r

2kBT
(
i j

xixjE drW@gi j ~rW !2gi j
ref~rW !#db̄i j

ref~$glm%;rW !.

~B8!

Thus to optimize the parameters of the reference potential we
should makef stationary and solve the following equations:

(
i j

r i ,0r j ,0E drW@gi j ~rW !2gi j
ref~rW !#db̄i j

ref~$glm%;rW !50.

~B9!

Similar equations in the context of the reference HNC equa-
tion for the bulk were previously derived by Lado by a dif-
ferent method@60#. We thus refer to Eq.~B9! as the ‘‘Lado
equations’’. For simple fluids, interacting via LJ type poten-
tials, or plasmas of point charges interacting through the
Coulomb or Yukawa potentials we found that the Lado equa-
tions Eq.~B9!, or the simplified Lado equations which we
proposed@24#

(
i j

r i ,0r j ,0E drW@gi j ~rW !2gi j
ref~rW !#b̄i j

ref~$glm%;rW !50

~B10!

yield almost identical results.
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